Spectral Characterizations of Dumbbell Graphs

نویسندگان

  • Jianfeng Wang
  • Francesco Belardo
  • Qiongxiang Huang
  • Enzo Maria Li Marzi
چکیده

A dumbbell graph, denoted by Da,b,c, is a bicyclic graph consisting of two vertexdisjoint cycles Ca, Cb and a path Pc+3 (c > −1) joining them having only its end-vertices in common with the two cycles. In this paper, we study the spectral characterization w.r.t. the adjacency spectrum of Da,b,0 (without cycles C4) with gcd(a, b) > 3, and we complete the research started in [J.F. Wang et al., A note on the spectral characterization of dumbbell graphs, Linear Algebra Appl. 431 (2009) 1707–1714]. In particular we show that Da,b,0 with 3 6 gcd(a, b) < a or gcd(a, b) = a and b 6= 3a is determined by the spectrum. For b = 3a, we determine the unique graph cospectral with Da,3a,0. Furthermore we give the spectral characterization w.r.t. the signless Laplacian spectrum of all dumbbell graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Line Graphs and Forbidden Induced Subgraphs

Beineke and Robertson independently characterized line graphs in terms of nine forbidden induced subgraphs. In 1994, S8 olte s gave another characterization, which reduces the number of forbidden induced subgraphs to seven, with only five exceptional cases. A graph is said to be a dumbbell if it consists of two complete graphs sharing exactly one common edge. In this paper, we show that a graph...

متن کامل

An Application of Hoffman Graphs for Spectral Characterizations of Graphs

In this paper, we present the first application of Hoffman graphs for spectral characterizations of graphs. In particular, we show that the 2clique extension of the (t+ 1)× (t+ 1)-grid is determined by its spectrum when t is large enough. This result will help to show that the Grassmann graph J2(2D,D) is determined by its intersection numbers as a distance regular graph, if D is large enough.

متن کامل

$4$-Total prime cordial labeling of some cycle related graphs

Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

A generalization of Villarreal's result for unmixed tripartite graphs

‎In this paper we give a characterization of unmixed tripartite‎ ‎graphs under certain conditions which is a generalization of a‎ ‎result of Villarreal on bipartite graphs‎. ‎For bipartite graphs two‎ ‎different characterizations were given by Ravindra and Villarreal‎. ‎We show that these two characterizations imply each other‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010